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Abstract

Purpose – One major challenge in turbulent flow applications is to control the recirculation zone
behind the backward-facing step (BFS). One simple idea to do so is to modify the original BFS
geometry, of course, without causing adverse or undesirable impacts on the original characteristics of
the primary stream. The main objective of this work is to examine the solidity of the recirculation zone
behind several different geometries which are slightly to moderately different from the original BFS
geometry.

Design/methodology/approach – The implemented modifications cause complicated
irregularities at the boundaries of the domain. The experience shows that the mesh distribution
around these irregularities plays a critical role in the accuracy of the numerical solutions. To achieve
the most accurate solutions with the least computational efforts, we use a robust hybrid strategy to
distribute the computational grids in the domain. Additionally, a suitable numerical algorithm capable
of handling hybrid grid topologies is properly extended to analyze the flow field. The current fully
implicit method utilizes a physical pressure-based upwinding scheme capable of working on hybrid
mesh.

Findings – The extended algorithm is very robust and obtains very accurate solutions for the
complex flow fields despite utilizing very coarse grid resolutions. Additionally, different proposed
geometries revealed very similar separated regions behind the step and performed minor differences in
the location of the reattachment points.

Research limitations/implications – The current study is fulfilled two-dimensionally. However,
the measurements in testing regular BFS problems have shown that the separated shear layer behind
the step is not affected by 3D influences provided that the width of channel is sufficiently wide. A
similar conclusion is anticipated here.

Practical implications – The problem occurs in the pipe and channel expansions, combustion
chambers, flow over flying objects with abrupt contraction on their external surfaces, etc.

Originality/value – A novel pressure-based upwinding strategy is properly employed to solve flow
on multiblocked hybrid grid topologies. This strategy takes into account the physics associated with
all the transports in the flow field. To study the impact of shape improvement, several modified BFS
configurations were suggested and examined. These configurations need only little additional
manufacturing cost to be fabricated.
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Introduction
The identification and control of shear layer reattaching regions play critical roles in
many turbulent flows. They occur in many applications such as diffusers, airfoils with
high angles of attack, flow over buildings, and combustion chambers. Evidently,
controlling flow separation can result in considerable increase in system performance
and consequently in energy saving. However, to control separation regions, a good
knowledge of the flow behavior is essential. One of the most encountered reattaching
turbulent shear flows is the one behind a backward-facing step (BFS). The importance
of such flow has long drawn the attentions of many researchers to investigate the
details of recirculation region for controlling its structure and behavior. For example,
Eaton and Johnston (1981) revealed that the turbulent flow structure behind BFS
depends relatively on many different factors including the boundary-layer conditions,
the boundary-layer thickness before the step, the upstream or freestream turbulence
intensity, the pressure gradient, and the step height. Both the past and the recent
experiments indicate that the length of the separated region downstream of the step
enhances with increasing the step height (Abbott and Kline, 1961; Abu-Mulaweh et al.,
2002). Since the valuable work of Bradshaw and Wong (1972), there have been
numerous investigations in flow over BFS. Eaton and Johnston (1980) measured the
length of the separated region using thermal tufts. They showed that the shear stresses
were high in the separated region and that the flow was very oscillatory with low
frequency therein. Also, they claimed that the required controlling parameters would
not be easily predictable. Additionally, they showed that the flow oscillations damp out
very rapidly near the walls (in the inner region); however, that of the outer region keeps
oscillating slowly. Based on the experimental investigations performed in a fully
developed turbulent flow over BFS, Kuhen (1980) indicated that the inlet flow
characteristics had only minor effects on the length of the separation region. However,
the channel geometry, e.g. the channel entrance height to the step height and the angle
of wall channel with horizon (in the downstream region), had considerable effect on the
length of the separation region. For example, Otugen (1991) investigated the effect of
expansion ratio on the separated shear layer and the reattachment point. He indicates
that larger step height-to-inlet channel ratios lead to higher turbulence intensities and
faster growth of the unstable shear layer. Therefore, shorter normalized reattachment
lengths occurred with large expansion ratios. Eaton and Johnston (1981) reviewed
several measured data taken in 2D BFS flow using hot-wire, pulsed-fire and laser
anemometers. The experiments were performed on different types of flow. Their
collected data showed that the length of the separation region varied from 4.9 to
8.2 times the step height. In another research, Kim et al. (1984) showed that the
separation region has many large length scales which are in the order of the height of
the step. They also showed that the shear stresses drop very quickly right after the
separated region and that u0v0 is much higher in such flow compared with the planar
mixing layer.

Beside the investigations on baseline BFS configuration, there have been some
attempts from the flow control aspects. Selby et al. (1990) imposed a wall slip layer
through the use of transpose grooves. They experimentally investigated the
performance of transverse and swept grooves for controlling turbulent separated
flows over a backward-facing ramp. They reported that the reattachment distance can
be reduced by 20 percent over the baseline configuration. Their work showed that the
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change in the width of the grooves did not considerably change the reattachment point
while their heights had major effect. On the other hand, Kim and Chung (1994)
experimentally investigated the effect of surface roughness on the turbulent flow field
behind the step. They placed cubic roughness on the wall next to the separation region.
Using different combinations of roughness spacing and roughness height, they
established three different rigs and studied the length of the separation region, the
averaged velocity, and its oscillation in the streamwise directions. They reported that
the surface roughness on the bottom plate retarded the reattachment process by about
3.4 percent compared with that of the smooth surface. Yang and Kuo (1997) utilized
numerical tools to predict the fluid flow characteristics within the recirculation
zone for a BFS with uniform normal mass bleed. They used a finite-volume-based
finite-difference method with power-law scheme and showed that the mass bleeds
would suppress the reverse horizontal velocity, the turbulence intensity, and the
Reynolds shear stress within the recirculation zone. Additionally, the reattachment
point extended to downstream. Heenan and Morrison (1998) arranged a test rig and
studied the BFS from an unsteady flow perspective. They showed that the global
instability associated with inhomogeneous reattaching flows can be effectively
removed using a suitable permeable reattachment surface. The surface extends to the
point where the instantaneous velocity vector near the surface is in the downstream
direction all the time.

One alternative idea for separation control behind a step is to reconfigure the overall
geometry of the domain. For example, it is possible to incline the upper wall in a
manner to increase the flow cross section downstream of the step (Lien and Leschziner,
1994). Additionally, Abu-Mulaweh et al. (2002) experimentally examined the effect of
the step heights on the structure of the recirculation region. Since we do not intend to
change the baseline geometry drastically, we do not consider such overall
modifications in our investigation.

The numerical investigations of the modified BFS need special considerations
because of the flow complexities in the vicinity of the modified boundary faces. For
example, Thakur et al. (1996) numerically examined the turbulent flow past a BFS,
followed by a rough-walled channel. To overcome the grid distribution difficulties
occurred due to the large differences between the individual roughness element size
and the overall flow domain, they suggested composite grids and utilized k-1
turbulence model. Generally speaking, the grid generation for such complex solution
domains can be simplified if the domain is suitably divided into several simple
sub-domains. Then, each sub-domain can be filled in with only one type of element and
in a manner which automatically fits the boundaries of that sub-domain (Davidson,
1996). In a recent research, the current workers were assured that the hybrid grid usage
in laminar flow cases could remarkably enhance the efficiency of the basic numerical
procedure without jeopardizing its benefits (Darbandi et al., 2003b; Darbandi and
Naderi, 2006). In this work, the original hybrid method is suitably extended to
turbulent reattaching flow applications where hybrid grid utilization is almost
unavoidable. Since the current method is a finite-volume-based finite-element method,
it is possible to use both quadrilateral and triangular elements. To change the geometry
of the step, we have considered several different choices including the insertion of a
mini channel between the upstream and downstream of the step. The use of hybrid
grid not only eases the mesh generation procedure but also assures several side
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benefits. For example, the use of quadrilateral grid close to the wall assures the
non-oscillatory pressure field behavior in the domain. The main purpose of this work is
to establish a study on the firmness of the reattachment point behind the step despite
imposing different geometry modifications around the baseline configuration.

Domain discretization
In the finite-volume-based finite-element method, it is customary to utilize the
finite-element shape functions which are ingredient of the finite-element method. This
feature enables the finite-volume method to gain the geometrical flexibility of the
finite-element method. Therefore, from domain discretization point of view, we stick to the
approach taken routinely in the finite-element method. There are generally two choices of
triangular and quadrilateral elements in the finite-element method. The finite-element
methods normally utilize only one type of element shape to discretize the solution domain.
Each type has its own advantages and disadvantages. Generally speaking, triangles are
more flexible than quadrilaterals because they can be used in complex geometries
simply. However, the triangular-based mesh essentially suffers from grid orientation
plague (Baliga and Patankar, 1983; Darbandi et al. 2003a). On the contrary, the
quadrilateral-based topologies are easier to be generated. Also, non-oscillatory pressure
and velocity fields are less possible to occur in quadrilateral topologies. We can benefit the
advantages of both element types if they are suitably distributed in the sub-domains of a
complex solution domain which is properly broken into multiblocks. For example,
Figure 1(a) shows the region close to the step of an inclined BFS. In this figure, we have
used non-uniform hybrid grid within a structured context to distribute our grids desirably.
As is observed, the triangles can be readily fitted in the triangular block. Alternatively, the
advantages of both element shapes can be also utilized in flow fields with different flow
characteristics in different parts of the domain. For example, the grid distributions beside
the solid walls play critical role in achieving accurate turbulent flow solution in the
domain. A non-uniform structured grid distribution using quadrilaterals nearby the solid
walls has been highly recommended (Figure 1(b)) (Kim and Choi, 2000; Darbandi and
Naderi, 2006). The use of an unstructured grid in the rest of domain helps to reduce the
computational effort for a specified accuracy.

Figure 2 shows a small part of a solution domain consisted of four quadrilateral and
three triangular elements. It might be a part of grid shown in Figure 1. The solid lines
denote the elements while the dashed lines are their medians. The medians divide each
triangular element into three and each quadrilateral element into four sub-control
volumes (SCVs). The proper assemblage of the SCV around a chosen node results in a
control volume, see the shaded area in Figure 2. The node at the center of the element is a
good representative of the entire constructed control volume. In the next section, it will
be seen that it is required to calculate the convection and diffusion fluxes at midpoints of
the dashed lines, i.e. at the cell faces. The fluxes are calculated at the integration points
which are identified by ip. They are indicated as ip1 and ip2 for SCV1 in Figure 2.

Governing equations and computational modelling
The steady 2D transport equation for a general property w can be written as:

›

›x
ðruwÞ þ

›

›y
ðrvwÞ ¼

›

›x
Gw

›w

›x

� �
þ

›

›y
Gw

›w

›y

� �
þ Sw ð1Þ
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The components of the velocity vector are u and v. Table I provides the details of
general property w, diffusivity coefficient Gw, and source term Sw for the mass,
momentums, turbulent kinetic energy (TKE), and the dissipation rate of TKE
equations. The two G and me parameters in Table I represent the production term and
the turbulent viscosity coefficient, respectively. They are given by:

me ¼ ml þ mt ¼ ml þ rCm

k 2

1
ð2Þ

G ¼ mt 2
›u

›x

� �2

þ
›v

›y

� �2
" #

þ
›u

›y
þ

›v

›x

� �2
( )

ð3Þ

The density, dynamic viscosity, and eddy viscosity are represented by r, ml, and mt,
respectively. As is indicated in Table I, we use standard k-1 model to simulate
turbulent flow. The correlating constants in this model are C1 ¼ 1.44, C2 ¼ 1.92,
Cm ¼ 0.09, sk ¼ 1.0, and s1 ¼ 1.3. Because of the inaccuracy of the k-1 turbulence
model close to the solid walls of the BFS, it is required to use suitable supplementary

Figure 1.
Two types of hybrid mesh

utilizations in: (a)
irregular; and (b) baseline

BFS domains
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wall function there. We employ the standard two-layer form of the law of the wall
(Thangam and Speziale, 1992):

�uþ ¼
1

K
ln yþ þ 5;

k

u2
t

¼ C21=2
m ; 1 ¼ C3=4

m

k 3=2

Ky

at the first grid point y away from the wall if y þ ; yut/v $ 11.6 given that �uþ ; �u=ut
(ut is the friction velocity and K ¼ 0.41 is von Karman constant); if y þ , 11.6, then �u,
k, and 1 are interpolated to their wall values based on viscous sublayer constraints
(Amano, 1984).

Figure 2.
A control volume
constructed from the
assemblage of five SCVs

Equation w Gw Sw

Mass 1 0 0
x-momentum u me 2 ›p

›x

� �
þ ›

›x
me

›u
›x

� �
þ ›

›y
me

›v
›x

� �
y-momentum v me 2 ›p

›y

� �
þ ›

›x
me

›u
›y

� �
þ ›

›y
me

›v
›y

� �
Turbulence kinetic energy k me/sk G 2 r1
Dissipation rate of k 1 me/s1 1(C1G 2 C2r1)/k

Table I.
The definitions of w, Gw,
and Sw in equation (1)
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The transport equation is integrated over an arbitrary control volume consisted of
SCVs taken from either quadrilateral or triangular elements. The chosen control
volume in Figure 2 consists of five SCVs numbered from SCV1 to SCV5. Using the
divergence theorem, the volume integration on a control volume can be reduced to an
assemblage of line integrals over the boundaries of that chosen volume. The boundary
of the chosen control volume in Figure 2 consists of ten sub-surfaces, i.e. SS1-SS10. For
the sake of brevity, we only present the formulation for an individual SCV, i.e. SCV1,
which only has two subsurfaces, i.e. SS1 and SS2. Considering the above explanations,
the integration of the convection terms in equation (1) over SCV1 yields:Z

SCV1

›

›x
ðruwÞ þ

›

›y
ðrvwÞ

� �
dx dy ø ½ðr�uwÞDSx þ ðr�vwÞDSy�SS1

þ ½ðr�uwÞDSx þ ðr�vwÞDSy�SS2

ð4Þ

where
!

dS ¼ ðDSxÞîþ ðDSyÞĵ is an outward normal vector to the face of each
subsurface. Here, the over bar indicates that the variable is approximated from its
known magnitude obtained at the preceding iteration. Later, we will show that the
magnitude of w in equation (4) is approximated at SS1 and SS2 using a
pressure-weighted physical-influence scheme developed by Darbandi and Schneider
(1998) for the laminar flow applications. In this scheme, the role of pressure is implicitly
forced in approximating the magnitude of w at the cell faces.

The integration of the diffusion part in equation (1) over SCV1 yields:Z
SCV1

›

›x
Gw

›w

›x

� �
þ

›

›y
Gw

›w

›y

� �� �
dxdyø Gw

›w

›x

� �
DSxþ Gw

›w

›y

� �
DSy

� �
SS1

þ Gw

›w

›x

� �
DSxþ Gw

›w

›y

� �
DSy

� �
SS2

ð5Þ

The gradients of w appeared in the right-hand-side of equation (5) are then
approximated using the gradients of finite-element shape functions.

The source terms in the momentum equations are a combination of different
gradients of w and pressure p parameters. They are treated very similar to the diffusion
terms in equation (5). However, the source terms in k and 1 equations need special
attention. The integrals of these source terms are approximated at the cell centers.
Using a mass-lumped approach, the integrations yield:

Sk ¼

Z
SCV1

ðG2 r1Þdx dy ø ðG2 r1ÞASCV1 ð6Þ

S1 ¼

Z
SCV1

1

k
ðC1G2 C2r1Þdx dy ø

1

k
ðC1G2 C2r1ÞASCV1 ð7Þ

where A ¼
P

iASCVi is the total area in the chosen control volume, see the shaded area
in Figure 2. The most difficult part in equations (6) and (7) is the calculation of G.
Considering a mass-lumped approach, this term is calculated at the cell center using
the gradients of the finite-element shape functions. Using finite-element shape
functions N, the k and 1 at the cell faces are similarly calculated using:
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k ¼
X3 or 4

j¼1

ðNjÞip1;ip2kj

1 ¼
X3 or 4

j¼1

ðNjÞip1;ip21j

ð8Þ

where j counts the number of nodes in each element. It can be three and four for the
triangular and quadrilateral element choices, respectively. The ip1 and ip2 indicate the
midpoints of SS1 and SS2 cell faces. They are shown using cross symbol in Figure 2. It
should be notified that the two source terms in k and 1 equations are explicitly
calculated from the known magnitudes obtained during the last iteration.

One critical stage in finite-volume method is to interpolate the cell face magnitudes,
i.e. the magnitudes at the integration points, from the magnitudes of neighboring grid
points. Inspecting equation (4), we need calculating velocity components at SS1 and
SS2. However, we should be very careful in interpolating the velocities and not ignore
the important role of convection-diffusion concept. To respect the correct physics of the
convection, Darbandi and Schneider (1998) employed a pressure-weighted
upwind-biased scheme (known as a physical influence scheme) on quadrilateral
grids. To model the correct physics of the convection, the convection term in equation
(4) is upwinded. Considering an arbitrary ith cell face in Figure 2, one inclusive
expression can be suggested as:

fi ¼ fk þ
›f

›s

� �
i

DSki ð9Þ

This expression has been written in the streamwise direction at mid-point of the ith cell
face. The length DSki is a geometry sensitive parameter. The subscript k denotes the
upstream of the ith cell-face. We have to determine the gradient of f along the
streamline in equation (9). We try to approximate this gradient using the original
governing PDE’s. In this regard, one meaningful approximation can be suggested by
writing the revised momentum equations in the streamwise direction, i.e.:

rV tot
›f

›s
¼ 7 · ðm7fÞ þ Sf ð10Þ

where V tot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u 2 þ �v 2

p
is the total velocity at the cell mid-point and the source term Sf

represents either ›p/›x in treating x-momentum equation or ›p/›y in treating
y-momentum equation. The substitution of equation (10) in equation (9) results in:

fi ¼ fk þ
1

rV tot
ð7 · ðm7fÞ þ SfÞ

� �
i

DSki ð11Þ

As is observed, the influence of pressure has been considered in calculating the
correction part of equation (9) now. Using the finite-element ingredient, this statement
can be discretized to:

fi ¼
X3 or 4

j¼1

ðNjÞkFj þ
1

rðV totÞi

X3 or 4

j¼1

ðNjÞiFj 2 fi

L2
i

2
X3 or 4

j¼1

›Nj

›z






i

Pj

0
BBBB@

1
CCCCADSki ð12Þ
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where Li is an appropriate diffusion length scale. This length can be estimated within
an element by discretizing the diffusion terms using suitable central difference
schemes in x- and y-directions (Darbandi and Schneider, 1998).

Equation (12) shows that fi appears in both sides of equation. A suitable
rearrangement of the new equation in terms of our major dependent variables, i.e. Fj

and Pj, finally yields:

fi ¼
X3 or 4

j¼1

aijFj þ
X3 or 4

j¼1

bijPj þ gi ð13Þ

where the subscript i denotes the number of cell faces within an element (Figure 2). The
parameters a, b, and g represent two 3 £ 3 (or 4 £ 4) matrices, and one 3 £ 1 (or
4 £ 1) array of coefficients, respectively. These coefficients measure the weights of
pressure and velocity fields on the cell-face magnitude. Equation (13) indicates that
fð; u; vÞ at cell-face can be approximated by the proper assemblage of Fð; U ;V Þ
and P magnitudes at the cell centers of an element which surrounds the ith cell face
magnitude. In fact, this approximation is known as the pressure-weighted upwinding
scheme.

Following the description provided in the Domain discretization section, the
current grid is a collocated one. As is known, the pressure-based algorithm suffers
from the pressure checkerboard problem if they are normally treated on collocated
grids. One remedy is to use the dual-velocity definitions at the cell faces. In this
regard, we use the idea of Darbandi and Bostandoost (2005) which provides a
wide range of velocity definitions to be employed at the cell faces of collocated
grid arrangements. Using this idea, one set of the velocity components is plugged
in the continuity equation and another set of the velocities in the rest of equations.
These substitutions suppress the spurious pressure oscillations in the domain.

At the end of the discretization procedure, the discretized equations are solved
in a bi-implicit manner (Darbandi et al., 2004). At the first step, the continuity and
momentum equations are implicitly solved to calculate the pressure and velocities,
respectively. At the second stage, the TKE and its dissipation rate equations are
implicitly solved to calculate k and 1 (Darbandi et al., 2005). Considering the
nonlinear nature of the discretized equations, it is required to iterate the extended
bi-implicit procedure until the magnitudes of the specified residuals become
sufficiently low.

The basic configuration and its modifications
As was elaborated in the Introduction section, the BFS flow problem occurs in many
practical engineering applications. The importance of this flow has led to several
important benchmark test cases which can be used to improve the advances in
turbulence modeling and to validate the newly developed numerical algorithms. Owing
to its complexities, there are numerous available publications which study this test
case either experimentally or numerically. Figure 3 shows the baseline geometry of a
BFS. Let us call it BS case. The longitudinal length is not exactly scaled in this figure.
Following the experimental data reported by Kim et al. (1984), the step height, the inlet
height, and the channel length are h ¼ 1, 2h, and 28h, respectively. However, to
achieve our goal, we need considering various entrance lengths 4h # b # 5h in our
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study. Their limiting cases are identified as BS1 (with b ¼ 4h) and BS2 (with b ¼ 5h).
In this study, all dimensions are given with respect to the step height. In another
words, all the lengths are nondimensionalized using the step height h. In our study, the
Reynolds number of the flow (based on the step height and the average inlet velocity) is
69,610. At the solid walls, no slip boundary condition is employed. However, k and 1
are found using standard wall functions. At the inlet, the profiles of velocity, k, and
1 are specified. The details can be found in Kim et al. (1984). At the outlet, the pressure
is specified.

As is known, the turbulent flow behind BFS involves several important phenomena
such as separation and reattachment regions and mixing-layer evolution. From the
mixing point of view, there have been numerous attempts to enhance the fluid mixing
behind the step. Following the past works mentioned earlier in the Introduction section,
we are also willing to study and control the separated shear layer behind the step by
trimming the step’s geometry. In this regard, the geometry around the step corner is
suitably modified. We have imposed several restrictions in our modification, e.g. the
new geometry should be cost effective from manufacturing perspective, the inlet
and outlet flow characteristics should not be altered, and supplementary suction
(or blowing) is not permitted.

In this work, four different extended geometries are investigated. They are called A,
B, C, and D (Figure 4). In type A, the sharp edge of the corner is suitably trimmed.
The results of three different cases of A, i.e. A1, A2, and A3, are presented here. In this
type, b ¼ 4.9, 4.5, and 4.0 and a ¼ 0.1, 0.5, and 1.0 for A1, A2, and A3 cases,
respectively. In type B, we study the effect of a rectangular groove located upstream of
the step. We consider three different B1, B2, and B3 groove geometries here. In these
cases, the inlet length is b ¼ 5.0 while the distances between the inlet and the grooves
are 4.0, 4.3, and 4.3 and the groove heights are 0.5, 0.5 and 0.2 for B1, B2, and B3
choices, respectively. In case B3, the groove height is low and located nearby the
separation point. In type C, the baseline configuration is modified by inserting a
secondary channel between the upstream and downstream of the step. Type C involves
two cases of C1 and C2. As is explained later, the former one acts like blowing while the
latter behaves like a suction. A proper combination of A3 and C2 configurations results
in a new type of geometry called type D. In cases C1, C2, D1, and D2, the magnitudes of
b, L1, L2, and h2 are 4.0, 0.1, 1.0, and 0.1, respectively. The height h1 is zero in C1 and
D1 cases while it is 0.1 in C2 and D2 cases.

Figure 3.
A schematic of the
baseline BFS geometry
identified as the BS case
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Figure 4.
Schematics of different

modified BFS geometries
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Results and discussion
Before presenting the results for our different BFS configurations, it is required to
validate the results of our extended algorithm. In this regard, we choose two test cases
which have been numerically solved by the past workers using the two-equation k-1
turbulence model. The first test case is taken from Westphal et al. (1984). This test case
has been numerically solved by Ilinca and Pelletier (1999) using two different
two-equation turbulence models including the k-1 and k-v ones. Following the
description given in the preceding section, the second test case is our baseline BFS
configuration which has been taken from Kim et al. (1984). This test case has been
numerically solved by Sohn (1988).

The geometry and boundary conditions of the first test case is taken from Ilinca and
Pelletier (1999). Using a step height of h, the height of channel, the length of channel, the
length of channel downstream of the step are 2.5h, 24h, and 20h, respectively. The
Reynolds number based on the inlet mean velocity is Re ¼ ðUhÞ=n ¼ 42; 000. The inlet
turbulence intensity is set to k=U 2 ¼ 0:02. The problem is tested using three different
grid resolutions from coarse Grid 1 to fine Grid 3. The details of three grid resolutions are
given in Table II. In this table, NI1 and NI2 indicate the number of nodes in the
longitudinal directions at upstream and downstream of the step, respectively. Similarly,
NJ1 and NJ2 indicate the number of nodes in the transversal directions at upstream and
downstream of the step, respectively. The table also shows that the number of nodes is
almost doubled from Grid 1 to Grid 2 and from Grid 2 to Grid 3. The number of nodes in
Grid 3 is almost one-half of that utilized by Ilinca and Pelletier (1999) in their fine grid.

Figure 5 shows the streamlines and TKE contours in the domain using fine Grid 3.
Qualitatively, they are similar to those of the references. Quantitatively, the length of
the recirculation region is about 6.5h. Westphal et al. (1984) experimentally measure
this length and report it as (7.33 ^ 1.0)h. Ilinca and Pelletier (1999) indicate that their
predictions using the k-1 model are closer than that of the k-v model to the
experimental data on their adapted meshes. Their best results predict a recirculation
length of 6.47h.

Following the measurements of Westphal et al. (1984) and the numerical solution
of Ilinca and Pelletier (1999), we also present the velocity and the TKE profiles at

NI1 NI2 NJ1 NJ2 Total nodes

Grid 1 17 81 27 45 4,023
Grid 2 25 101 37 65 7,389
Grid 3 45 129 47 85 12,951

Table II.
The grid resolution in the
three utilized meshes

Figure 5.
The streamlines and TKE
contours in the domain of
the first test case,
Re ¼ 42,000
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two longitudinal locations downstream of the step x/h ¼ 4.0 and 12.0. The results are
observed in Figure 6. To illustrate the mesh independence of the solutions, we have
presented the results for the three chosen grids. As is observed, the numerical solutions
approach their final distributions as mesh is gradually refined. In another words, the
figure indicates that Grid 3 is fine enough to guarantee mesh independent solution. The
figure also indicates that the current results are in good agreement with the numerical
solution and the experimental data. It should be notified that our results are very close
to those of Ilinca and Pelletier (1999) who similarly employ k-1 turbulence model in
their simulation.

As was described earlier, the second test case is the experiment of Kim et al. (1984).
Although the solution domain in this test case is a bit different from the first
test case, we solved the problem using different grid resolutions given in Table II.
The qualitative distributions of isobars, iso-TKEs, and streamlines have been in
excellent agreement with those of past workers. The details of the reattachment length

Figure 6.
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are given shortly. However, the velocity and TKE’s profiles are shown in Figure 7 and
compared with those of numerical solution and experimental data. Similar to the
conclusions obtained in Figure 6, the current solutions are in suitable agreement with
those of two-equation k-1 model presented by Sohn (1988). Figure 7 also provides the
results of mesh refinement study. As is seen, Grid 3 is fine enough to result in mesh
independent solution at all longitudinal locations.

The next stage is to validate the accuracy of our hybrid grid solutions. To achieve this,
we examined both pure quadrilateral and hybrid grid topologies with identical mesh node
numbers. As is shown in Figure 1, we have used the quadrilateral elements nearby the solid
walls in our hybrid grid choice. The rest of the domain is covered with triangles. Following
our preceding discussion, using this type of hybrid grid topology considerably improves
the solution nearby the solid boundaries. Also, the difficulties of the mesh orientation are
automatically resolved (Darbandi et al. 2003a). Figure 8 shows the mean velocity profiles at
three different stations downstream of the step. The results are compared with those of
Kim et al. (1984) and Sohn (1988). As is seen, the results of our hybrid and quadrilateral grid
topologies are nearly the same. This conclusion indicates that the accuracy of our original
formulation is not deteriorated in extending to hybrid grid applications. As was explained
earlier, Darbandi et al. (2003b) developed the original formulation to solve the laminar flow
fields using hybrid grids. They showed that the achieved accuracy is excellent in treating
laminar flow cases. Similarly, the achieved accuracy in solving turbulent flow is also
comparable with that of the laminar flow case. Comparing the results of quadrilateral and
hybrid grid topologies in Figure 8, it reveals that there is no disturbance at or around the
boundaries between the two adjacent mesh blocks.

As was mentioned in the Introduction section, Kuhen (1980) showed that the distance
between the separation point and the inlet flow b had little effect on the length of the
separation region. Although our channel geometry is different than Kuhen’s, we similarly
tested the effect of changing b from 4h to 5h in all chosen configurations. Figure 9 shows
the streamlines in the baseline geometry using two different b lengths. The results of both
cases indicate that the length of the separation region is almost the same and it is about
6.1h. The figure also compares the mean velocity profiles for cases BS1 and BS2 at three
different locations (x/h ¼ 1.33, 5.33, and 8.0) downstream of the step. These locations are
measured from the step in each case. This figure also shows that the distance b slightly
affects the mean velocity profiles in the separated shear layer behind the step.

Figure 10 shows the streamlines obtained after solving the A cases. A careful
calculation shows that the length of the separation region is about 5.7 times the step
height in all these cases. However, the mixing region decreases with respect to BS1
case going from case A1 to case A3. This figure also presents the mean velocity
profiles of A cases at three locations downstream of the step. The distances are
measured from the step’s top corner which is fixed in all the three cases. In this figure,
the mean velocity profiles of A cases are compared with the mean magnitudes of BS1
case. As is seen, the profiles of cases A are nearly identical. The differences between
the results at the first station (x/h ¼ 1.33) are hardly distinct, while the differences are
considerable at the second and third stations.

Figure 11 shows the streamlines using B cases. A careful examination indicates that
the length of the separation region is the same in these three cases and it is about 5.7 times
the step height. However, the mixing region decreases with respect to BS1 case going
from case B1 to case B3. The figure also illustrates the mean velocity profiles at three
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different stations using B1, B2, and B3 cases. The current profiles are also compared
with case BS2 in this figure. The location of these sections are measured from x/h ¼ 5.
The figure shows that the profiles of all B cases are exactly the same at all three stations.
However, their deviations from the standard BS2 case are considerable.

Figure 12 shows the streamlines resulted from testing C1 and C2 cases. These two
tests showed that the C1 case would perform a blowing effect and the C2 case a suction
effect. The suction and blowing behaviors return to the pressure differences between
the two terminals of the inserted channel. As is observed, the length of the separation
region in case C2 is obviously shorter than the BS1 case and case C1 performs little
changes relative to BS1 case. The length of the separation region in case C1 is 5.7 times
the step height while it is 5.3 in case C2. This figure also demonstrates the mean
velocity profiles of C cases and compares them with BS1 case at three chosen sections
downstream of the step. The location of the sections are determined from x/h ¼ 5. In all
sections, the mean velocity profiles of cases C can be clearly distinct from case BS2,
although cases C1 and C2 do not behave similarly. The difference between case C2 and
BS2 is more than that between cases C1 and BS2.

Figure 13 shows the streamlines of case D2 which is a combination of A3 and C2
configurations. The test showed that this case would perform a suction effect. The
length of the separation region is about 5.7 times the step height. The figure also shows
the mean velocity profiles of cases D2 and compares them with that of case BS1 at the
three utilized stations downstream of the separation points. The distances are
measured from the top corner where the separation begins, i.e. x/h ¼ 4. The mean
velocity profiles are quite different from those of BS1 case shown at x/h ¼ 5.33 and 8.0.

Back to Figure 10, we have identified two lengths, i.e. LS and LT, for case A2. They
indicate the distances from the reattachment point to either top or bottom corners
of the step. We indicate R as the length of the separation region in cases BS1 or BS2.

Figure 8.
Comparing the results of
quadrilateral and hybrid
grid topologies with those
of Kim et al. (1984) and
Sohn (1988) at three
stations downstream of
the step
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The above two parameters are defined as the percentage in decreasing the current
mixing length relative to R. In B and C cases, LS ¼ LT : These two parameters are
defined as:

ES% ¼
R2 LS

LS

£ 100 ET% ¼
R2 LT

LT
£ 100 ð14Þ

Figure 9.
A comparative study of
the streamlines and the

mean velocity profiles
using BS1 and BS2 cases
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Figure 10.
A comparative study of
the streamlines and the
mean velocity profiles
using A1-A3 cases
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Figure 11.
A comparative study of
the streamlines and the

mean velocity profiles
using B1-B3 cases
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Table III presents the amount of decrease in the length of separation region using A, B,
C, and D configurations. As is seen, the C2 geometry has the most reduction effect in LS
magnitude. The amount of the reduction is about 15 percent. The other configurations
do not affect the reattachment point considerably. Similarly, the geometries A3 and D2
have had the most important impact in reducing the magnitude of LT. Cases A2 and C2
are next to A3 and D2 in destabilizing the reattachment point.

Figure 12.
A comparative study of
the streamlines and the
mean velocity profiles
using C1 and C2 cases
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Figure 13.
A comparative study of
the streamlines and the

mean velocity profiles
using D2 case

Type LS/h ET (percent) LT/h ET (percent)

A 1 5.7 7 5.6 9
2 5.7 7 5.2 17
3 5.7 7 4.7 30

B 1 5.7 7 5.7 7
2 5.7 7 5.7 7
3 5.7 7 5.7 7

C 1 5.7 7 5.7 7
2 5.3 15 5.3 15

D 2 5.7 7 4.7 30

Table III.
The percentage of mixing
length reduction using A,

B, C, and D modified
configurations
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At the end, it is worth to mention that the current study is limited to 2D BFS
geometries. However, the past experimental investigation on baseline BFS geometry
has shown that the separated shear layer behind the step is firm and is not readily
affected by the 3D influences if the BFS is wide enough in the spanwise direction. For
example, Otugen (1991) performed a preliminary investigation before his
measurements to insure 2D of the flow behind the step. He obtained the velocity
and turbulence intensity profiles at different spanwise locations and showed that they
were essentially the same regardless of the spanwise location. A similar study had
been performed by Armaly et al. (1983). Nie and Armaly (2004) tried to reduce the
width of BFS and study the impact of 3D of the flow on the main recirculation region
behind the step. They performed measurements of the boundaries of the reverse flow
regions that develop adjacent to the bounding walls of a 3D BFS flow as a function of
Reynolds number. They say that the size of the reverse flow regions adjacent to the
bounding walls is presented for the laminar, transitional, and turbulent flow regimes.
In comparison with the reattachment point at the stepped wall for 2D flow, the 3D flow
results at the center of the test section are slightly higher in the laminar flow regime
(Re , 400), significantly lower in the transition flow regime ð400 , Re , 3; 400Þ; and
slightly lower in the fully turbulent flow regime (Re . 3,400). There is no spanwise
variation in the turbulent regime and the distribution is almost uniform in the center
width region for 0:2 , z=L , 1:8. Additionally, the size of the reverse flow region
adjacent to the sidewall and the flat wall in this geometry increases and moves further
downstream in the laminar flow regime, decreases and moves upstream in the
transition flow regime, and remains constant or diminishes in the turbulent flow
regime; as the Reynolds number increases.

Conclusion
We employed a newly developed numerical algorithm capable of handling hybrid grid
topologies to solve turbulent flow in irregular domains. Then, we used the extended
tool to analyze the flow over modified BFS geometries in order to control the mixing
regions and to evaluate the firm structure of the separated shear layer following the
changes imposed in the baseline geometry of the step. Comparing the mean velocity
profiles and the streamlines using quad and hybrid grid topologies indicated that they
were nearly the same. The results obtained from different geometries indicate that the
reattachment point is highly firm and is not easily affected by simple geometry
modifications and simple trimming of the baseline configuration. However, a
significant change in the baseline geometry, e.g. constructing suitable channels
between the upstream and downstream of the step, may considerably affect the firm
structure of the recirculating region.
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